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Thermodynamic Functions of Adsorbed Molecules 
from Heats of Immersion1 

B Y GEORGE JURA AND TERRELL L. H I L L 

If Ns molecules are adsorbed on a solid of area 
«, it is of interest2 to know the entropy and energy 
per molecule, ss = Ss/Ns and ES = Es/Ns, respec­
tively. These functions can be calculated from two 
adsorption isotherms, measured at neighboring 
temperatures down to very low pressures, as illus­
trated in a paper by Hill, Emmett and Joyner.3 

In favorable cases, with careful measurements, this 
can be an accurate method. On the other hand, in 
other cases very serious errors in the surface pres­
sure, <p, and hence in ss and ES, may arise owing to 
uncertain extrapolation of the adsorption isotherm 
to p = 0. These errors can be especially serious 
in systems in which there are first order phase 
changes in the adsorbed phase: the phase change 
might be missed or the actual pressure at which it 
occurs may be uncertain. 

An alternative and in general more precise 
method of obtaining ss and ES is to combine a com­
putation of (p from a single adsorption isotherm with 
heats of immersion or ordinary integral calorimetric 
heats of adsorption, measured at the same tempera­
ture. Harkins and Jura4 used this method to ob­
tain thermodynamic functions referred to the solid 
surface. We shall point out below the relations be­
tween the Harkins-Jura functions and the thermo­
dynamic functions of the adsorbed molecules {e.g., 
ss and E5). Incidentally, if the solid is perturbed 
by the adsorbed phase, the equations given below 
are still valid (see IX). 

Let U0 be the heat of immersion (in the liquid 
adsorbate) of the clean solid adsorbent, carried out 
in a container of fixed volume, and let U be the heat 
of immersion of the solid with Ns molecules ad­
sorbed on it. Then it is easy to see that 

EL - E, = (U0 - U)/N, (1) 

where E£ is the internal energy of the liquid adsorb­
ate per molecule (in equilibrium with vapor). 
Also,2using Eq. (1) 

T(ss - sO = KU- U0)/N,} + O/D - kTln x (2) 
x = p/p0, r = N,/a 

assuming the vapor is a perfect gas and omitting a 
negligible volume term. 

A comparison of the quantities calculated by 
Harkins and Jura4 in their Fig. 9 with the present 
notation gives the following relations between the 
two sets of functions 

(?» - y.t)m = f (3) 

(e. - <Uf)HJ = (Uo - U)/Q. = V(Bl - E3) (4) 
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- T(S. - S51)HJ = T(EL - E.) -if = 

T[T(Si - S8) - kTlnx] (S) 

Whenever there is strong binding of the first 
layer to the surface, regardless of the details (solid 
adsorbents with small pores are excepted) and inde­
pendent of any particular theory, one would expect 
a minimum in ss — s£ at about the completion of a 
monolayer.5 This is because a virtually filled mono­
layer has fewer possible statistical configurations 
than either an incomplete monolayer or a complete 
monolayer plus an incomplete second layer. When 
combined with an estimate of the surface area per 
molecule in a filled monolayer, the above entropy 
minimum6 can be used as a method for surface area 
determination not dependent on a detailed theory. 
In the two cases worked out so far3'7 excellent agree­
ment with the B.E.T. surface area is obtained. 
Minima in the function (ss — ssf)nj do not have 
this simple theoretical relation to surface area, be­
cause of T and x in Eq. (5). 

Alternatively, instead of using heats of immer­
sion, E3 in Eq. (1) (relative to gas or liquid), for use 
in Eq. (2), may be found from integral calorimetric 
heats of adsorption,2 as done by Drain and Morri­
son.7 

Finally, we wish to examine the effects of errors in 
ip of the type mentioned above. For this purpose, 
we assume that errors in the heat measurements 
are negligible and that errors in <p arise only from 
pressures below the pressure region under discus­
sion. Following V, let ip be the true spreading 
pressure, $ the incorrect spreading pressure and a 
the error in $ 

&(p,T) = <p(p,T) + a(T) ((S) 

Let Ss be the correct entropy obtained from Eqs. 
(V-86, 93) and Sg the incorrect entropy found by us­
ing <f> instead of <p in these equations. In this latter 
case, let a, be the value of a at Tx and a2 at T2. Then 
the error in the entropy is (V) 

Aa = a2 — ai, AT = T2 — Ti 

On the other hand, using Eq. (2) and an intermedi­
ate a and T, the corresponding error is a /TT. If a 
is of the same order of magnitude as Aa, the error 
in the heat calculation will thus be smaller in the 
ratio AT/T. However, if the error is systematic 
(i.e., Aa = 0), the opposite result is possible (Aa/ 
A r < a/T). 

We have also 
, T /Ao « \ ,„> 

which corresponds to Equation (7). 
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(5) See, for example, T. L. Hill, J. Chem. Phys., 17, 772 (1949). 
(6) In many cases the differential entropy curve will be available but 

not the molar integral entropy curve. In this case, if there is a "loop" 
in the differential entropy,2-3'7 the surface area can be estimated by as. 
suming that a monolayer is completed at the inflection point in the loop. 

(7) L. E. Drain and J. A. Morrison, American Chemical Society 
Meeting, New York, September, 1951. 


